3.481 \(\int \frac{\cot (e+f x)}{(a-a \sin ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=53 \[ \frac{1}{a f \sqrt{a \cos ^2(e+f x)}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a \cos ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2} f} \]

[Out]

-(ArcTanh[Sqrt[a*Cos[e + f*x]^2]/Sqrt[a]]/(a^(3/2)*f)) + 1/(a*f*Sqrt[a*Cos[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0922653, antiderivative size = 53, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {3176, 3205, 51, 63, 206} \[ \frac{1}{a f \sqrt{a \cos ^2(e+f x)}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a \cos ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2} f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]/(a - a*Sin[e + f*x]^2)^(3/2),x]

[Out]

-(ArcTanh[Sqrt[a*Cos[e + f*x]^2]/Sqrt[a]]/(a^(3/2)*f)) + 1/(a*f*Sqrt[a*Cos[e + f*x]^2])

Rule 3176

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*cos[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]

Rule 3205

Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFact
ors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(b*ff^(n/2)*x^(n/2))^p)/(1 - ff*x
)^((m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2
]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cot (e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx &=\int \frac{\cot (e+f x)}{\left (a \cos ^2(e+f x)\right )^{3/2}} \, dx\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{(1-x) (a x)^{3/2}} \, dx,x,\cos ^2(e+f x)\right )}{2 f}\\ &=\frac{1}{a f \sqrt{a \cos ^2(e+f x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{(1-x) \sqrt{a x}} \, dx,x,\cos ^2(e+f x)\right )}{2 a f}\\ &=\frac{1}{a f \sqrt{a \cos ^2(e+f x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{1-\frac{x^2}{a}} \, dx,x,\sqrt{a \cos ^2(e+f x)}\right )}{a^2 f}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{a \cos ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2} f}+\frac{1}{a f \sqrt{a \cos ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.0672689, size = 55, normalized size = 1.04 \[ \frac{\cos (e+f x) \left (\log \left (\sin \left (\frac{1}{2} (e+f x)\right )\right )-\log \left (\cos \left (\frac{1}{2} (e+f x)\right )\right )\right )+1}{a f \sqrt{a \cos ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]/(a - a*Sin[e + f*x]^2)^(3/2),x]

[Out]

(1 + Cos[e + f*x]*(-Log[Cos[(e + f*x)/2]] + Log[Sin[(e + f*x)/2]]))/(a*f*Sqrt[a*Cos[e + f*x]^2])

________________________________________________________________________________________

Maple [A]  time = 2.359, size = 75, normalized size = 1.4 \begin{align*}{\frac{1}{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}f} \left ( -\ln \left ( 2\,{\frac{\sqrt{a}\sqrt{a \left ( \cos \left ( fx+e \right ) \right ) ^{2}}+a}{\sin \left ( fx+e \right ) }} \right ){a}^{2} \left ( \cos \left ( fx+e \right ) \right ) ^{2}+\sqrt{a \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}^{{\frac{3}{2}}} \right ){a}^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)/(a-a*sin(f*x+e)^2)^(3/2),x)

[Out]

1/a^(7/2)/cos(f*x+e)^2*(-ln(2/sin(f*x+e)*(a^(1/2)*(a*cos(f*x+e)^2)^(1/2)+a))*a^2*cos(f*x+e)^2+(a*cos(f*x+e)^2)
^(1/2)*a^(3/2))/f

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a-a*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.68648, size = 155, normalized size = 2.92 \begin{align*} -\frac{\sqrt{a \cos \left (f x + e\right )^{2}}{\left (\cos \left (f x + e\right ) \log \left (-\frac{\cos \left (f x + e\right ) + 1}{\cos \left (f x + e\right ) - 1}\right ) - 2\right )}}{2 \, a^{2} f \cos \left (f x + e\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a-a*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

-1/2*sqrt(a*cos(f*x + e)^2)*(cos(f*x + e)*log(-(cos(f*x + e) + 1)/(cos(f*x + e) - 1)) - 2)/(a^2*f*cos(f*x + e)
^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot{\left (e + f x \right )}}{\left (- a \left (\sin{\left (e + f x \right )} - 1\right ) \left (\sin{\left (e + f x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a-a*sin(f*x+e)**2)**(3/2),x)

[Out]

Integral(cot(e + f*x)/(-a*(sin(e + f*x) - 1)*(sin(e + f*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.12655, size = 80, normalized size = 1.51 \begin{align*} \frac{\arctan \left (\frac{\sqrt{-a \sin \left (f x + e\right )^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a} a f} + \frac{1}{\sqrt{-a \sin \left (f x + e\right )^{2} + a} a f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a-a*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

arctan(sqrt(-a*sin(f*x + e)^2 + a)/sqrt(-a))/(sqrt(-a)*a*f) + 1/(sqrt(-a*sin(f*x + e)^2 + a)*a*f)